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LETTER TO TIIE EDITOR 

Self-consistent mean-field approximation for the 
square-lattice frustrated Heisenberg model 
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Chinese Cenln of Advanced Science and lkchnology p r l d  laboratory), PO Box 8730, 
Beijing 100080. People's Republic of China and Instilute of Condensed Matter Physics, 
Department of Physics, Jiao m n g  Universily, Shanghai 200030, People's Republic of 

' Chinat 

Received 5 May 1992 

Abstract. A self-consisrent mean-field method is used to obtain lhe phase diagram of 
lhe frusValed antiferromagnetic I-leiscnkrg model with next-nearest-neighbour exchange 
couplings on a square lallice at zero temperature slatting with a Holstein-PrimakoR 
uansformation. It is suggested ilia1 die N&-type order is no1 destroyed for any value of 
the ratio of the nearest- to nexr-nearesl-neighbour exchange couplings for S I, while 
for S = f there may exisl a disordered phase for slmng frustration. 

Recently the two-dimensional frustratcd antiferromagnetic (AF) Heisenberg models 
have attracted much interest. Chandra and Doucot [l] rust studied the square lattice 
AF Heisenberg model with frustration introduced by next-nearest-neighbour exchange 
coupling (called the N" model heaeafter) with linear spin-wave (Lsw) theory [2] 
and suggested that its ground state is spin liquid around a point where the classical 
ground state is heavily degenerate. Since then, the nature of the ground state of this 
model has been studed by various authors [3-1S]. Several states have been proposed 
for the ground states of this N" model: the spin liquid state [3], the dimer state 
[4-91, the chiral spin state [lo], the twisted spin state [ll], and so on. However, there 
is controversy as to which exists truly as the ground state of the NNN model. 

In a previous work 1191. the present author used the spin-wave expansion to eval- 
uate the staggered magnetization of the square-lattice NNN model to order O(l/S*) 
at zero temperature. It is shown that the corrections to the LSW theory due to 
the higher-order terms in the Hamiltonian based on thc spin-wave expansion of the 
Holstein-Primakoff (HP) transformation [20] are wry important. If we deal with 
these terms properly, we can get reasonable approximate results. For this reason we 
have decided to carry out a further study of the NNN model using a self-consistent 
mean-field method developed by Chu and Shen [21] to deal with the non-linear terms 
of the quantum AF Heisenberg Hamiltonian based on AF spin-wave theory. 

Consider the N" model defined on a square lattice of N sues [l]: 
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where the sites {ii'} E A and the sites { j p )  E B. The notation (ij) denotes the 
nearest-neighbour (NN) pairs on the square lattice, and (ii') and (jf) denote the 
nearest-neighbour pairs on the sublattices A and B, respectively. The lattice constant 
is taken to be equal to unity. The parameter a is assumed to be positive and thus 
the NN and NNN exchange couplings compete with each other. 

Classically, for a < 0.5 the ground state of this system has the conventional 
two-sublattice N6el-type long-range order. If a exceeds 0.5, the system splits into 
interpenetrating square lattices, in each of which two-sublattice order exists. Following 
[4] we call the latter order the four-sublattice N6el order. In the quantum case these 
conclusions are modified even at zero temperature due to zero-point fluctuations. 
The order parameter vanishes in certain cases, where the conventional long-range 
order may be unstable, leading to a new spin state. The phase diagram giving the 
critical value of the spin below which the order parameter ceases U) be a function 
of a has been determined (1, 13-16] with LSW theory, modified spin wave (MSW) 
theory [22] and Schwinger-boson mean-field (SMBF) theory [23]. The purpose of this 
letter is to obtain a phase diagram within a self-consistent mean-field approximation 
starting with the HP transformation. The self-consistent mean-field approximation 
starting with Dyson-Maleev transformation 1241 is also applicable to the N" model. 
Using the latter transformation we can obtain a completely identical set of self- 
consistent equations. Since the Hamiltonian of the Dyson-Maleev transformation is 
not Hermitian, we choose the HP transformation as our starting point. As we shall 
show, the 1/S -a phase diagram obtained differs significantly from that obtained by 
LSW, MSW and SMBF theories [l, 13-16]. 

We assume, as is usual, that the staggered magnetization is parallel to the z 
direction. ?b obtain, within the self-consistent spin-wave theory, the ground-state 
properties for the N" model given by (I), we follow the standard procedure for the 
two-sublattice and four-sublattice cases. Using the HP transformation, the Hamilto- 
nian can be rewritten in terms of the Bose operators of the spin deviation on the 
sublattices. For the two-sublattice case, by the HP transformation [ Z O ] :  

S: = S-  .:ai 
S! = - S +  b i b .  1 1  St 1 = (S-)$ 1 = mbf(1- b:bj /2S)'I2 (2)  

S? = (s;)+ = &Z(I - a f a ; / 2 ~ ) " ~ a ~  

the Hamiltonian (1) can be written as H I i p  

HHP = H ,  + HI + . . . (3) 
where S is the magnitude of the spin, and ai  and bj are Bose annihilation operators. 
In (3) the quadratic part H ,  is 

H, = - 2 N S Z ( 1 - o l ) +  S z ( a f a i +  b:bj + a f b j  +sib:) - a S x ( a f a i - a f a i , )  
Pj ) (ii') 

and the quartic part H ,  is 

t t  H, = - ; C ( a f a i a i b i  1 + b:bjbiai+2afaib:b ) - x ( a f a t a ; , a , ,  a - a i  a i , a i a i , )  

(ii') 
' 4  

(ij) 
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The key step is the method of processing the quartic part given by (5). Here we 
apply the self-consistent mean-field approximation 1211 for these non-linear terms to 
obtain the mean-field Hamiltonian. Le t  

(a ia i )  = (atat) = (aiai,) = (ata$) = (bjb, ,)  = ( b f b $ )  = (b jb j )  = (b fb : )  = 0 

( a t b j )  = (a;b:) = 0. (6) 

We can directly linearize the non-linear terms in H, as 

a t a i a ; b j  = ( a t a i ) a i b j  + ( a i b j ) a t a ;  - ( a t a i ) ( a i b j )  
b t b . b . a .  1 1 1  * = (b,’bj)b,a; + (b ja i )bfb j  - ( b f b j ) ( b j a ; )  

ai t t  ai ,a i ,a i ,  = (ai,a;,)ai t t ai,  + (ai t ai , )a$a; ,  - ( a t a ; , ) ( a $ a i 8 )  
bfb;b j ,b j ,  = (b$bj , )bfb jp  + (b:bjt)b$bj, - (bfb j , ) (b$bj , )  

a>a;b:b, = (1 - X)[(a>a;)b:b,  + (b:b j )afa i  - (a fa i ) (b :b j ) ]  
+ A[(afb:)a,bj  + (a ;b j )a fb :  - ( ~ t b T ) ( a i b j ) ]  

a; t t  ai ,a ia i ,  = (1 - A‘) [ (a ta ; )a$a i ,  + (a$a i , )a>a i  - ( a i a i ) ( a $ a i t ) ]  

+ A‘[(ata, , )a$a; t (ata;)afai, - ( u t a ; t ) ( a $ Q i ) ]  
b+b+,b.b. I I J 1 ‘ -  - (1 - A’)[(b:bj)b$bj, t (b$bj,)b:bj - (b:bj)(b:b,,)] 

+ .A’[(bf bj , )b;  bj t (b:, b,) b: b j f  - (bf bj,)(b$ b,)]  (8) 

where 0 < A, A’ < 1 are Lagrange multipliers introduced by us, which will be deter- 
mined later by minimizing the energy of the ground state. 

Now, using the Bogoliubov transformation, the Fourier transform of the mean- 
field Hamiltonian can be easily diagonalized. Alter a straightforward calculation we 
have the following results. The ground-statc energy is given by 

E,, = -2N(1- o)S2 + ? N e , .  (9) 

The staggered magnetization is 

(S:) = S - A (10) 

and the spin-wave excitation energy is 

b ( k )  = 4Ak/Ak (11) 

where 

A,  = (1 - cr + o q k ) S  - (1 - oi - X + a A ’ t  ( a / 2 ) q k ) A  - oi(1/2- X’qb)B - C/2  

(12) 
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Ah = [1 - B~/A~]-’’z (14) 

eo = ( A  + C ) ( S  - A + AA - XC) - oi(A - B)(ZS - A + X’A t X‘B) (15) 

with 

k q k  

c = - - - C A ~ B ~ ~ ~ ~ A ~  1 

N k  

and 

1 1 
Y k  = 4 exp(ik6) = -(cos 2 k ,  + cos k,,) 

6 

Here 6 and A are vectors to nearest and next-nearest neighbours of a given site 
respectively. The above equations are solved with the constraint of choosing the 
Lagrange multipliers X and A’ to minimize the ground-state energy. 

A similar procedure to that described above for the two-sublattice case can bc 
taken for the four-sublattice case (collinear case). In the latter case, as long as one 
takes note of the fact that four types of Bose operators should be introduced, then 
following the same procedure as above we can obtain the corresponding cquations 
within the self-consistent mean-field approximation, which will not be given here for 
brevity. We will see below that for the four-sublattice case there is no qualitative 
difference from the LTW theory. 

We have numerically solved the self-consistent equations for both the two- 
sublattice and four-sublattice cases for various values of a and S. The Lagrangc 
multipliers X and A‘ arc chosen so as to minimize the energy Eo of the lowest-energy 
state, Le., the ground state. We obtain a phase diagram on the 1/S - a plane as 
shown in figure 1. For the two-sublattice case the phase boundary goes noticeably 
beyond a = 0.5 and for S -, CO the boundary turns back on itself to reach the 
classical limit Q = 0.5 and docs not drop vertically to a - 0.56, which is quite 
different from the results obtained by Chandra and Doucor [l] with LSW theory, but 
which agrees qualitatively with the calculations of [13-161 using MSW and SMBF the- 
ories. For the four-sublattice case our calculation shows that there is no qualitative 
difference between the LTW, MSW and SMBF theories. In figure 1 the lines A(A’) and 
B(B’) are solutions for (Si) = 0 corresponding to the two-sublattice case and the 
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four-sublattice case, respectively. Thus two-sublattice NBel order exists below A and 
above B' and the four-sublattice counterpart exists below B and above A'. As for 
the region below A' and B' there exists either two-sublattice or four-sublattice N6el 
order. 'RI determine which state is more stable in this coexistent region we have nu- 
merically mmputed the ground-state energies of both cases and compared them. The 
energy of the two-sublattice case is equal to that of the four-sublattice case on the 
boundary line C. This means that there is a first-order phase transition between both 
cases on line C In the region between lines B' and C the energy of the two-sublattice 
case is less than that of the four-sublattice case, while in the region between lines 
C and A' the energy of the two-sublattice case exceeds that of the four-sublattice 
case. Therefore, the system has two-sublattice NBel order in the region below A 
and above C, and in the region below B and above C four-sublattice NCel order 
exists. A ht-order  phase transition occurs on line C between the two-sublattice and 
the four-sublattice NCel states. Above lines A and B no NBel-type long-range order 
exists. 

Figure I. Phase diagram of the NNN model at zero temperature obtained within the 
self-consistent mean-field approximation based on the Holstein-PrimaCoR transformation. 
The lines A(A') and B(B') show the crilical MIU~S below which the order parameter 
vanishes, corresponding to Ihe WO-sublatlice and four-sublattice cares, respectively. ?he 
line C h Ihe ru31-order transirion boundaiy. 

As seen in figure 1, we have found that for S > 1 there is no qualitative difference 
between our theory and the MSW theory [1>15] or the SMBF theory [16]: the NBel 
order is not destroyed at any value of a. On the contrary, for S = 1/2 at a certain 01 

( zz 0.47) the staggered magnetization vanishes, which is considerably different from 
~ ~ u l t s  obtained [13-161 using MSW and SMBF theories. This also occurs within LSW 
theory, but in this case (Si) vanishes at a larger value of a (- 0.47 within present 
approximation but - 0.38 within LSW theory 111). It is reasonable to speculate 
that long-range order is destroyed around a = 0.5 for two-dimensional spin-i NNN 
frustrated Heisenberg systems. Thus a number of interesting ideas about quantum 
disordered antiferromagnets could be tested experimentally for spin-h systems. 

In summary, we have obtained a phase diagram of the two-dimensional N" 
frustrated antiferromagnetic Heisenberg model within the self-consistent mean-field 
approximation starting with the Holstein-Primakoff transformation. It is suggested 
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that for S > 1 the system has either two-sublattice or four-sublattice order at any value 
of the ratio of nearest- and next-nearest-neighbour exchange couplings. At a - 0.5 
a f i rs tader  phase transition exists between the states. On the contrary, for S = $ it 
seems very likely that a disordered state exists around a = 0.5 for the NNN frustrated 
AF Heisenberg model. The nature of this state is still controversial. These conclusions 
are based on the calculation of the self-consistent mean-field approximation of the 
Holstein-Primakoff transformation. Of course. the present approximate calculations 
need to be improved; for example, first, our approximation is a mean-field theory 
and it is difficult to control; second, the terms in flHP higher than quartic and the 
kinematic interactions are also very important, and these must be considered if a 
quantitatively more reliable result is to be obtained. 

This work was partially supported by the National Natural Science Foundation of 
China (Grant No. 1900.1007). 
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